2021
DOI: 10.18494/sam.2021.3241
|View full text |Cite
|
Sign up to set email alerts
|

Drug Verification System Based on Deep Learning Multiscale Rotating Rectangle Detector and Feature Embedding

Abstract: This research is aimed at the development of automatic drug image verification functions. Our verification system is composed of two stages. The first stage is an arbitrarily axis-aligned object detector, which is mainly based on a deep residual network and feature pyramid network (FPN). The detector predicts the rotation bounding boxes for drugs using multiscale feature maps generated by the FPN. Then, the rotation bounding boxes are axially aligned, and the drug image is cropped according to the axis-aligned… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?