DrugFormer: Graph‐Enhanced Language Model to Predict Drug Sensitivity
Xiaona Liu,
Qing Wang,
Minghao Zhou
et al.
Abstract:Drug resistance poses a crucial challenge in healthcare, with response rates to chemotherapy and targeted therapy remaining low. Individual patient's resistance is exacerbated by the intricate heterogeneity of tumor cells, presenting significant obstacles to effective treatment. To address this challenge, DrugFormer, a novel graph‐augmented large language model designed to predict drug resistance at single‐cell level is proposed. DrugFormer integrates both serialized gene tokens and gene‐based knowledge graphs… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.