A hydride reorientation can deteriorate the mechanical ductility of spent fuel cladding and make it more susceptible to failure. Therefore, an evaluation of the reorientation under dry storage conditions and their effects on the cladding ductility are critical issues in terms of the regulation criteria. In this work, biaxial stress was applied to Zircaloy-4 cladding by pressurizing Ar gas. The study showed that the hydride reorientation can occur at around 60 and 80 MPa at 400 and 300 • C, respectively. The ring compression test at room temperature showed that the ductility decreases with an increase in radial hydride quantity: Fl(45) and radial hydride continuity factor. In addition, a significant hydride reorientation can occur at high temperature conditions even if the hoop stress is equal to or less than 90 MPa which can bring a significant ductility degradation.