To realize energy-saving and efficient industrial grain drying, the present work studied the variable-temperature drying process of corn drying in a novel industrial corn-drying system with a heat recycling and self-adaptive control function. The drying kinetics, thermal performance, heat-loss characteristics and the heat-recycling performance of the drying system under different allocations between flue gas and hot air were investigated, and the optimized drying process was proposed and compared with two constant drying processes. The results showed that the optimized drying process exhibited better drying kinetic and thermal performance than the two constant drying processes. More specifically, the total heat loss, total energy consumption and specific energy consumption of the optimized drying process were ascertained to be 36,132.85 MJ, 48,803.99 MJ and 7290.27 kJ/kg, respectively, which were lower than those of the other two processes. On the other hand, the thermal efficiency of the drying chamber for the optimized drying process was ascertained to be varied within the range of 6.81–41.71%. Overall, the validation results showed that the optimized drying process can significantly improve the drying performance of the drying system.