The speed of Ethernet over copper cables has steadily increased by a factor of 10,000 over the last four decades, from 1Mb/s in the earliest Ethernet implementations to 10Gb/s in recent systems. This paper describes the design considerations on all levels of the 10GBASE-T design hierarchy that form the basis for the implementation of highly power-efficient AFEs in full-duplex 10GBASE-T transceivers. It also shows how these considerations are implemented in a practical design. At frequencies up to 400MHz, the transceiver presented in this paper achieves >62dBc transmitter SFDR, >62dBc echo cancellation (EC) SFDR and >60dB receiver SFDR. Achieving a bit-error-rate (BER) better than 10 −15 , it dissipates less than 1.75W at full 10Gb/s traffic over a 100m cable, which is the lowest power for a 10GBASE-T AFE published to date.