Starting from the dual Lagrangians recently obtained for (partially) massless spin-2 fields in the Stueckelberg formulation, we write the equations of motion for (partially) massless gravitons in (A)dS in the form of twisted-duality relations. In both cases, the latter admit a smooth flat limit. In the massless case, this limit reproduces the gravitational twistedduality relations previously known for Minkowski spacetime. In the partially-massless case, our twisted-duality relations preserve the number of degrees of freedom in the flat limit, in the sense that they split into a decoupled pair of dualities for spin-1 and spin-2 fields. Our results apply to spacetimes of any dimension greater than three. In four dimensions, the twisted-duality relations for partially massless fields that appeared in the literature are recovered by gauging away the Stueckelberg field.