2003
DOI: 10.1016/s0305-0548(01)00087-9
|View full text |Cite
|
Sign up to set email alerts
|

Dual-based heuristics for a hierarchical covering location problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
17
0
5

Year Published

2004
2004
2019
2019

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 38 publications
(22 citation statements)
references
References 20 publications
0
17
0
5
Order By: Relevance
“…In relation to classical location problems we may cite the Lagrangean dual ascent heuristic developed by Guignard (1988) for the simple plant location problem, a comparison of Lagrangean and surrogate relaxations for the maximal covering location problem by Galvão et al (2000), the development of dual-based heuristics for a hierarchical covering location problem by Espejo et al (2003), a maximal covering location model in the presence of partial coverage by Karasakal and Karasakal (2004), and a branch-and-price approach to p-median location problems by Senne et al (2005).…”
Section: A Survey Of Subsequent Workmentioning
confidence: 99%
“…In relation to classical location problems we may cite the Lagrangean dual ascent heuristic developed by Guignard (1988) for the simple plant location problem, a comparison of Lagrangean and surrogate relaxations for the maximal covering location problem by Galvão et al (2000), the development of dual-based heuristics for a hierarchical covering location problem by Espejo et al (2003), a maximal covering location model in the presence of partial coverage by Karasakal and Karasakal (2004), and a branch-and-price approach to p-median location problems by Senne et al (2005).…”
Section: A Survey Of Subsequent Workmentioning
confidence: 99%
“…This particular problem looked at locating facilities that provided different levels of service to the demand nodes. Espejo et al [9] expanded on the HCLP model, developing solutions using dual-based heuristics; specifically, a subgradientbased heuristic incorporating a Lagrangean-surrogate relaxation, which reduced to a 0-1 knapsack problem. Megiddo et al [10] considered locating new facilities within a pre-existing network of established facilities, with the goal of "drawing" a maximum number of customers.…”
Section: Location Modelingmentioning
confidence: 99%
“…Com a finalidade de ilustrar, para o HCLP, o desempenho da relaxação combinada L-S em relação às relaxações Lagrangeana e surrogate, reproduzimos na tabela abaixo os resultados obtidos em Espejo et al (2003). Os problemas-teste utilizados nessa tabela foram os seguintes: S55, rede definida por Swain (1971); G&R100 e G&R150, que correspondem às redes geradas aleatoriamente por Galvão & ReVelle (1996); B300, B500 e B700, obtidos da biblioteca eletrônica de Beasley para o problema das p-medianas (problemas Pmed11, Pmed21 e Pmed31).…”
Section: Ilustração Do Uso De Umaunclassified
“…Nossa experiência prática em resolver o problema da mochila com coeficientes fracionários explica o porque destes resultados. Maiores detalhes podem ser encontrados em Espejo et al (2003).…”
Section: Ilustração Do Uso De Umaunclassified