By calculating the compensation phase distribution from the radiation fields of the feed, two approaches are proposed for reflectarrays (RAs) generating circularly polarized orbital angular momentum (CP-OAM) beams with higher mode purity. Particularly, if the radiation fields are extracted in spherical coordinates rather than Cartesian coordinates, the required phase distribution for generating a CP-OAM beam of +1/−1 mode can be directly obtained according to our mathematical derivation which shows that the spherical components of left-/right-hand circularly polarized (LHCP/RHCP) fields naturally involve the OAM phase term of +1/−1 mode. To better demonstrate our work, CP-OAM RAs with either smooth horn or corrugated horn of RHCP as feed are designed by three approaches: the conventional approach (CA) based on the estimated phase center, and two proposed approaches based on simulated radiation fields in Cartesian coordinates (CCA) and spherical coordinates (SCA), respectively. Full-wave simulation results show that the OAM mode purity can be enhanced by either CCA or SCA, and the SCA can produce even higher mode purities than CCA when an offset feed is employed.