High-performance motion tracking of electro-hydraulic servo systems plays an important role in developing industrial technology. However, the system itself has parameter uncertainty, uncertain nonlinearity, and measurement noise, significantly decreasing the performance of conventional controllers designed based on nominal models. To improve the tracking performance of electro-hydraulic servo systems, an adaptive dynamic surface control method combining extended state observer and radial basis function neural network is proposed. Firstly, an extended state observer combining neural network output and parameter adaptation technology is designed without the need for speed and pressure feedback to observe the system’s unknown state variables and nonlinear matched disturbance. The design of neural networks is used to approximate mismatched disturbance with significant nonlinearity online. Then, the proposed extended state observer is introduced into the neural adaptive backstepping design, effectively compensating for simultaneous matched and mismatched disturbances, thereby suppressing most of the uncertain nonlinearity of the system. Meanwhile, online update of uncertain parameters further improves the tracking performance of the controller. In addition, the introduction of dynamic surface overcomes the “explosion of complexity” issue in backstepping design. The rigorous stability of the closed-loop system is proved by the Lyapunov stability theory. Finally, the effectiveness of the proposed controller is validated through comparative experiments on valve-controlled hydraulic cylinder.