Organismal fitness depends on the ability of gene networks to function robustly in the face of environmental and genetic perturbations. Understanding the mechanisms of this stability is one of the key aims of modern systems biology. Dissecting the basis of robustness to mutation has proven a particular challenge, with most experimental models relying on artificial DNA sequence variants engineered in the laboratory. In this work, we hypothesized that negative regulatory feedback could stabilize gene expression against the disruptions that arise from natural genetic variation. We screened yeast transcription factors for feedback and used the results to establish ROX1 (Repressor of hypOXia) as a model system for the study of feedback in circuit behaviors and its impact across genetically heterogeneous populations. Mutagenesis experiments revealed the mechanism of Rox1 as a direct transcriptional repressor at its own gene, enabling a regulatory program of rapid induction during environmental change that reached a plateau of moderate steady-state expression. Additionally, in a given environmental condition, Rox1 levels varied widely across genetically distinct strains; the ROX1 feedback loop regulated this variation, in that the range of expression levels across genetic backgrounds showed greater spread in ROX1 feedback mutants than among strains with the ROX1 feedback loop intact. Our findings indicate that the ROX1 feedback circuit is tuned to respond to perturbations arising from natural genetic variation in addition to its role in induction behavior. We suggest that regulatory feedback may be an important element of the network architectures that confer mutational robustness across biology.R obustness of organismal function in the face of perturbations is critical for fitness. Since the seminal work of Waddington (1), biologists have remarked on the stability of phenotypes against environmental and genetic variation, and understanding how organisms achieve robustness remains one of the major challenges in systems biology (2-4). Much of the search for molecular mechanisms of robustness has focused on gene regulation. Characteristics of regulatory networks that confer robustness include pathway redundancy and master regulatory organization (5), phenotypic capacitors (6-8), paired activating and inhibiting inputs (9), and cooperative and feed-forward regulation (10). Additionally, negative regulatory feedback, in which a biomolecule represses its own abundance, can buffer variation in gene expression (11,12), and negative feedback loops have been shown to underlie robustness to variable environmental conditions and stochastic intracellular change (13-15). Negative feedback may also confer network stability against the effects of mutations (3, 16), but evidence for negative feedback as a driver of mutational robustness in vivo has been at a premium (17); the relevance of this principle to natural genetic variation remains largely unknown.In this work, we focused on negative feedback in yeast hypoxia regulation motiva...