Currently single-photon avalanche diode (SPAD) arrays suffer from a small-scale pixel count, which makes it difficult to achieve high-resolution 3D imaging directly through themselves. We established a CCD camera-assisted SPAD array depth imaging system. Based on illumination laser lattice generated by a diffractive optical element (DOE), the registration of the low-resolution depth image gathered by SPAD and the high-resolution intensity image gathered by CCD is realized. The intensity information is used to guide the reconstruction of a resolution-enhanced depth image through a proposed method consisting of total generalized variation (TGV) regularization and temporal-spatial (T-S) filtering algorithm. Experimental results show that an increasement of 4 × 4 times for native depth image resolution is achieved and the depth imaging quality is also improved by applying the proposed method.