Lateral flow immunochromatographic assays are a powerful diagnostic tool for point-of-care tests, based on their simplicity, specificity, and sensitivity. In this study, a rapid and sensitive gold nanoparticle (AuNP) immunochromatographic strip is produced for detecting aflatoxin B1 (AFB1) in suspicious fungi-contaminated food samples. The 10 nm AuNPs were encompassed by bovine serum albumin (BSA) and AFB1 antibody. Thin-layer chromatography, gel electrophoresis and nuclear magnetic resonance spectroscopy were employed for analysing the chemical complexes. Various concentrations of AFB1 antigen (0-16 ng/mL) were tested with AFB1 antibody-BSA-AuNPs (conjugated AuNPs) and then analysed by scanning electron microscopy, ultraviolet-visible spectroscopy, and Zetasizer. The results showed that the AFB1 antibody was coupled to BSA by the N-hydroxysuccinimide ester method. The AuNPs application has the potential to contribute to AFB1 detection by monitoring a visible colour change from red to purple-blue, with a detection limit of 2 ng/mL in a 96-well plate. The lateral flow immunochromatographic strip tests are rapid, taking less than 10 min., and they have a detection capacity of 10 ng/g. The smartphone analysis of strips provided the results in 3 s, with a detection limit of 0.3 ng/g for AFB1 when the concentration was below 10 ng/g. Excellent agreement was found with AFB1 determination by high-performance liquid chromatography in the determination of AFB1 among 20 samples of peanuts, corn, rice, and bread.for Aflatoixin B1 (AFB1) [8]. The European Economic Community (EEC) has established permitted food contamination limits of 2 µg/kg for AFB1 and 4 µg/kg for the total concentration of the four AFLs since 1 February 1999 [9]. Therefore, it is necessary to develop strategies for achieving the limits of AFL contamination and reducing AFL exposure in vulnerable populations [10].Thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) are the most popular techniques for detecting AFLs. However, these methods require extensive sample preparation, expensive instruments, and operation by skilled professionals. Alternatively, the enzyme-linked immunosorbent assay (ELISA) has been successfully developed for AFLs [11], but ELISA also needs incubation and washing steps, and application is mainly confined to laboratories. Lateral flow immunochromatographic/immunoassay strips (LFIAs) have received increasing attention for qualitative and quantitative analysis in different scientific sectors [12], including food safety, environmental monitoring, and precision medicine [12,13]. In 2005, Delmulle et al. [14] developed an LFIA for the detection of aflatoxin B1 (AFB1) in pig feed. Liao and Li [15] have made significant effort to investigate the effect of the core-shell silver-gold nanocomposites on the properties of LFIAs. However, this detection can only provide either qualitative (positive or negative) or semi-quantitative information on analyte concentration, and thereby does not satisfy the requirements for...