SPTBN2 is a protein-coding gene that is closely related to the development of malignant tumors. However, its prognostic value and biological function in pan-cancer, especially pancreatic cancer (PAAD), have not been reported. In the present study, a novel exploration of the value and potential mechanism of SPTBN2 in PAAD was conducted using multi-omics in the background of pan-cancer. Via various database analysis, up-regulated expression of SPTBN2 was detected in most of the tumor tissues examined. Overexpression of SPTBN2 in PAAD and kidney renal clear cell cancer patients potentially affected overall survival, disease-specific survival, and progression-free interval. In PAAD, SPTBN2 can be used as an independent factor affecting prognosis. Mutations and amplification of SPTBN2 were detected, with abnormal methylation of SPTBN2 affecting its expression and the survival outcome of PAAD patients. Immunoassay results demonstrate that SPTBN2 was a potential biomarker for predicting therapeutic response in PAAD, and may influence the immunotherapy efficacy of PAAD by regulating levels of CD8 + T cells and neutrophil infiltration. Results from an enrichment analysis indicated that SPTBN2 may regulate the development of PAAD via immune pathways. Thus, SPTBN2 is a potential prognostic biomarker and immunotherapy target based on its crucial role in the development of PAAD.