The revolutionary RNA-guided endonuclease CRISPR/Cas9 system has proven to be a powerful tool for gene editing in a plethora of organisms. Here, utilizing this system we developed an efficient protocol for the generation of heritable germline mutations in the parasitoid jewel wasp, Nasonia vitripennis, a rising insect model organism for the study of evolution, development of axis pattern formation, venom production, haplo-diploid sex determination, and host-symbiont interactions. To establish CRISPRdirected gene editing in N. vitripennis, we targeted a conserved eye pigmentation gene cinnabar, generating several independent heritable germline mutations in this gene. Briefly, to generate these mutants, we developed a protocol to efficiently collect N. vitripennis eggs from a parasitized flesh fly pupa, Sarcophaga bullata, inject these eggs with Cas9/guide RNA mixtures, and transfer injected eggs back into the host to continue development. We also describe a flow for screening mutants and establishing stable mutant strains through genetic crosses. Overall, our results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in N. vitripennis, with strong potential for expansion to target critical genes, thus allowing for the investigation of several important biological phenomena in this organism.Hymenopteran insects, including all ants, bees, and wasps, represent one of the most prominent insect orders, occupying roughly 8% of all described species on earth 1 . The parasitoid wasp Nasonia vitripennis is one of the most tractable and comprehensively studied hymenopterans genetically 2 , owing to its overall ease of laboratory use, its short generation time (roughly ~2 weeks), tolerance for inbreeding, and straightforward rearing. Like all other hymenopterans, N. vitripennis utilizes a haplodiploid sex determination system by which haploid males develop parthenogenetically from unfertilized eggs while diploid females develop from fertilized eggs 2 . Interestingly, this mode of sex determination makes N. vitripennis and other members of the clade vulnerable to manipulation by microbial and genetic parasites. For example, Arsenophonus nasoniae, a natural bacterial endosymbiont of N. vitripennis, effectively kills male progeny by manipulating key components of the mitotic machinery required specifically for early male embryonic development 3 . This male-killing results in significantly biased sex ratios favoring females, thereby benefiting the bacteria as they are transmitted solely from infected mother to offspring 4 . In addition to sex ratio-distorting bacteria, other genetic agents can influence the sex ratios of hymenopteran insects. For example, although the genome of N. vitripennis naturally harbors five chromosomes, some individuals have been discovered to also contain a sixth, supernumerary (B) chromosome termed paternal sex ratio (PSR) 5 . PSR is paternally transmitted through the sperm and acts by eliminating the haploid genome, thereby converting what should be diploid females i...