2022
DOI: 10.48550/arxiv.2201.09490
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Dual Preference Distribution Learning for Item Recommendation

Abstract: Recommender systems can automatically recommend users items that they probably like, for which the goal is to represent the user and item as well as model their interaction. Existing methods have primarily learned the user's preferences and item's features with vectorized representations, and modeled the user-item interaction by the similarity of their representations. In fact, the user's different preferences are related and capturing such relations could better understand the user's preferences for a better … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?