Developing silicon nanoparticle (SiNP) synthesis techniques that allow for straightforward control of nanoparticle size and associated optical properties is critical to potential applications of these materials. In addition, it is, in general, hard to probe the absorption threshold in these materials due to silicon's low absorption coefficient. In this study, size is controlled through direct introduction of sulfur hexafluoride (SF6) into the dilute silane precursor of plasma synthesized SiNPs. Size reduction by nearly a factor of two with high crystallinity independent of size is demonstrated. The optical absorption spectra of the SiNPs in the vicinity of the bandgap are measured using photothermal deflection spectroscopy. Bandgap as a function of size is extracted taking into account the polydispersity of the samples. A systematic blue shift in absorption edge due to quantum confinement in the SiNPs is observed with increasing flow of SF6. Photoluminescence (PL) spectra show a similar blue shift with size. However, a ∼300 meV difference in energy between emission and absorption for all sizes suggests that PL emission involves a defect related process. This shows that, while PL may allow size-induced shifts in the bandgap of SiNPs to be monitored, it cannot be relied on to give an accurate value for the bandgap as a function of size.