High‐voltage lithium‐ion batteries (LIBs) have attracted great attention due to their promising high energy density. However, severe capacity degradation is witnessed, which originated from the incompatible and unstable electrolyte‐electrode interphase at high voltage. Herein, a robust additive‐induced sulfur‐rich interphase is constructed by introducing an ultrahigh S‐content of 34.04% additive (methylene methyl disulfonate, MMDS) in 4.6 V LiNi0.5Co0.2Mn0.3O2 (NCM523)||graphite pouch cell. The MMDS does not directly participate the inner Li+ sheath, but the strong interactions between MMDS and PF6‐ anions promote the preferential decomposition of MMDS and broaden the oxidation stability, and facilitate the formation of an ultrathin but robust sulfur‐rich interfacial layer. The electrolyte consumption, gas production, phase transformation and dissolution of transition metal ions were effectively inhibited. As expected, the 4.6 V NCM523||graphite pouch cell delivers a high capacity retention of 87.99% even after 800 cycles. This work shares new insight into the sulfur‐rich additive‐induced electrolyte‐electrode interphase for stable high‐voltage LIBs.