Excitotoxic insults induce c-Jun N-terminal kinase (JNK) activation, which leads to neuronal death and contributes to many neurological conditions such as cerebral ischemia and neurodegenerative disorders. The action of JNK can be inhibited by the Dretro-inverso form of JNK inhibitor peptide (D-JNKI1), which totally prevents death induced by N-methyl-D-aspartate (NMDA) in vitro and strongly protects against different in vivo paradigms of excitotoxicity. To obtain optimal neuroprotection, it is imperative to elucidate the prosurvival action of D-JNKI1 and the death pathways that it inhibits. In cortical neuronal cultures, we first investigate the pathways by which NMDA induces JNK activation and show a rapid and selective phosphorylation of mitogen-activated protein kinase kinase 7 (MKK7), whereas the only other known JNK activator, mitogen-activated protein kinase kinase 4 (MKK4) In many nervous system disorders, including cerebral ischemia, traumatic brain injury and neurodegenerative diseases, overactivation of N-methyl-d-aspartate (NMDA) receptors leads to neuronal damage, resulting in neuronal loss and consequent severe neurological impairment. This cascade of neuronal injury, referred to as 'excitotoxicity', is still only partly understood. Dying neurons activate complex signal transduction events to trigger their death program, and the c-Jun N-terminal kinase (JNK) pathway plays an important role in this process. 1 D-retro-inverso form of JNK inhibitor (D-JNKI1) is an extremely potent neuroprotectant against excitotoxicity of cortical neurons and against different in vivo paradigms of neurodegeneration. [2][3][4] The active part of this peptide contains a retro-inverso form of a 20-amino-acid sequence (JBD 20 ) from the JNK-binding domain (JBD) of the scaffold protein JNK-interacting protein-1 (IB1/JIP-1), and it blocks the access of JNK to many of its targets. [5][6][7] Recently, Negri et al. 8,9 performed a detailed re-examination of the JBD-containing proteins and identified 19 different substrates of JNK. They then proved in a cell-free assay that the JBD 20 sequence prevented interactions and phosphorylations by JNK of nine of these targets. Among these nine substrates, we have studied the following four that might participate in regulating the death of cortical neurons: (1) MADD/DENN (MAPK-activating death domain-containing protein/differentially expressed in normal and neoplastic cells); (2-3) mitogen-activated protein kinase kinase 4 (MKK4) and mitogen-activated protein kinase kinase 7 (MKK7), the two direct upstream activators of JNK and (4) the scaffold protein IB1/JIP-1.,In particularly, MADD/DENN was identified as a substrate for JNK3, 10 the isoform most clearly involved in excitotoxicity 11,12 and mostly expressed in the brain. [10][11][12] Increasing evidence supports a strong correlation between low MADD/ DENN expression and neuronal loss. 13,14 MKK4 and MKK7 are the only known JNK activators. In some cell types, MKK4 activates JNK primarily by stress stimuli and MKK7 by inflammatory cytoki...