Purpose Surgical reattachment of tendon to bone often fails due to regeneration failure of the specialised tendon-bone junction (TBJ). The use of mesenchymal stem cells for TBJ regeneration has been reported with promising results. Tendonderived stem cells (TDSCs) with high proliferative and multilineage differentiation potential have been isolated. As stem cells residing in tendons, TDSCs can be considered a new cell source for TBJ repair. Bone morphogenic protein 2 (BMP-2) is a potent osteogenic factor with roles in normal bone healing and pathological ectopic bone formation in soft tissues. The use of BMP-2 to promote TBJ repair has been well reported. This study aimed to compare TDSCs to the gold standard bonemarrow-derived mesenchymal stem cells (BMSCs) with respect to osteogenic response to BMP-2 in vitro. Method The clonogenicity and multi-differentiation potential of TDSCs and BMSCs were identified by colony-formingunit assay, osteogenic, adipogenic and chondrogenic differentiation assays. Their osteogenic response to BMP-2 in vitro was examined by alkaline phosphatase (ALP) cytochemical staining, ALP activity assay and Alizarin red S staining of calcium nodule formation. Messenger RNA (mRNA) and BMP receptor (types IA, IB and II) protein expression were examined by quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. Results Our results showed that both TDSCs and BMSCs exhibited stem cell properties, including clonogenicity and multi-differentiation potential. TDSCs expressed higher mRNA and protein levels of BMP receptors IA, IB and II. They also exhibited higher osteogenic differentiation with and without BMP-2 stimulation compared with BMSCs. Conclusions TDSCs with/without BMP-2 might be an attractive source for TBJ repair compared with BMSCs.