P granules and other RNA/protein bodies are membrane-less organelles that may assemble by intracellular phase separation, similar to the condensation of water vapor into droplets. However, the molecular driving forces and the nature of the condensed phases remain poorly understood. Here, we show that the Caenorhabditis elegans protein LAF-1, a DDX3 RNA helicase found in P granules, phase separates into P granule-like droplets in vitro. We adapt a microrheology technique to precisely measure the viscoelasticity of micrometer-sized LAF-1 droplets, revealing purely viscous properties highly tunable by salt and RNA concentration. RNA decreases viscosity and increases molecular dynamics within the droplet. Single molecule FRET assays suggest that this RNA fluidization results from highly dynamic RNA-protein interactions that emerge close to the droplet phase boundary. We demonstrate than an N-terminal, arginine/glycine rich, intrinsically disordered protein (IDP) domain of LAF-1 is necessary and sufficient for both phase separation and RNA-protein interactions. In vivo, RNAi knockdown of LAF-1 results in the dissolution of P granules in the early embryo, with an apparent submicromolar phase boundary comparable to that measured in vitro. Together, these findings demonstrate that LAF-1 is important for promoting P granule assembly and provide insight into the mechanism by which IDP-driven molecular interactions give rise to liquid phase organelles with tunable properties.liquid droplets | intracellular phase transition | intrinsically disordered proteins | RNA granules I ntracellular RNA/protein (RNP) assemblies, including germ granules, processing bodies, stress granules, and nucleoli, are key players in the regulation of gene expression (1). RNP bodies, also referred to as RNA granules, function in diverse modes of RNA processing, including splicing, degradation, and translational repression of mRNA. These ubiquitous structures lack a membrane boundary but nonetheless represent a coherent organelle composed of thousands of molecules, manifesting as microscopically visible puncta in both the cytoplasm and the nucleus.Recent studies have demonstrated the apparent liquid-like behavior of various RNP bodies (2-5) including wetting, dripping, and relaxation to spherical structures upon fusion or shearing. The assembly and disassembly of liquid-like organelles appears to be governed by a phase separation process, demonstrated by a concentration-dependent condensation/dissolution of P granules (2, 6) and the assembly and size scaling of the nucleolus (7) in the Caenorhabditis elegans embryo. Liquid phase separation has also been suggested to play a role in stress granule assembly (4) and in multivalent signaling proteins (8). These studies lend increasing support to the hypothesis that liquid phases play a central role in intracellular organization. However, the specific molecular interactions that drive phase separation and the mechanisms by which liquid properties impart cellular function remain largely unclear. P granule...