Tuberculosis (TB) is a zoonotic infectious disease caused by Mycobacterium tuberculosis (Mtb). Apoptosis and necrosis caused by the interaction between the host and the pathogen, as well as the host’s inflammatory response, play an important role in the pathogenesis of TB. Dual-specificity phosphatase 1 (DUSP1) plays a vital role in regulating the host immune responses. However, the role of DUSP1 in the regulation of THP-1 macrophage apoptosis induced by attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection remains unclear. In the present study, we report that infection with BCG significantly induces macrophage apoptosis and induces the production of DUSP1, TNF-α and IL-1β. DUSP1 knockdown significantly inhibited BCG-induced macrophage apoptosis and activation of MAPKs/NF-κB signaling pathway. In addition, DUSP1 knockdown suppressed BCG-induced inflammation in vivo. Taken together, this study demonstrates that DUSP1, as a regulator of MAPKs/NF-κB signaling pathway, plays a novel role in BCG-induced macrophage apoptosis and inflammatory response.