Due to its high functionality, the solid state transformer (SST) represents an emerging technology with huge potential to replace the conventional low-frequency transformer (LFT) in a wide range of applications, including railway traction, smart grids, and others. On the other hand, model predictive control (MPC) has proven to be a highly promising control approach for several power electronics systems, especially those based on multiple power converters. Considering these facts, over recent years, different MPC techniques have been proposed for different types of SSTs. In addition to that, numerous MPC strategies have also been investigated for various power converters topologies that can be used in SSTs. However, a paper summarizing and discussing MPC strategies in the framework of SSTs has not yet been proposed in the literature, being the main goal of this work. In this paper, all the existing MPC techniques in complete SST topologies will be presented and discussed. In addition, for the sake of the example, an overview of MPC strategies in converter topologies typically used in SSTs will also be presented.