The design and synthesis of a series of zwitterionic ionic liquids (ZILs) to understand the structure-property relationship towards an increase of the thermal stability, a variation of the glass transition temperature, the shape-tuning of nanostructured aggregates and the tuning of the stimuli responsiveness are demonstrated. The substitution reaction of imidazole with various aliphatic and aromatic bromides followed by the reaction of the corresponding substituted imidazoles with bromoalkyl carboxylic acids of varying spacer length produces the ZILs. In aqueous solution, a ZIL molecule either exist in its ionic liquid (substituted imidazolium bromide) form or its zwitterionic (substituted imidazolium alkyl carboxylate) form with an isoelectric point (pI) depending on the pH value of the solution. Upon changing the pH to near or above the pI, the aqueous ZIL solution undergoes transition from a transparent to a turbid phase due to the formation of insoluble hierarchical nanostructured aggregates of various morphologies, such as spheres, tripods, tetrapods, fern-like, flower-like, dendrites etc. depending on the pH of the solution and the nature of the alkyl/vinyl/aryl substituents. Upon heating the solution a phase transition occurs from turbid to transparent, exhibiting a distinct reversible upper critical solution temperature (UCST)-type cloud point (T ). It is observed that the cloud point varies with the nature of the substituent, an increase of the concentration of the ZIL as well as with changes of the pH of the solution.