CD47 performs a vital function in cancer therapy by binding to different SIRPα, thrombospondin 1, and integrin. However, its role in tumor immunity and its correlation with prognosis among many cancer types remain unknown. The raw mRNA expression data of CD47 in cancer patients was downloaded from TCGA and GTEx datasets. The protein expression of CD47 was detected using a microarray. Kaplan Meier analysis and forest plot were performed to compare the effects of high and low expression of CD47 on overall survival in different cancers. In addition, the correlations between CD47 expression and immune cell infiltration, stromal components, immune checkpoint genes, tumor mutational burden (TMB), and microsatellite instability (MSI) were analyzed from the public database. The gene function was determined by Gene Set Enrichment Analysis (GSEA). The expressions of CD47 in CHOL, COAD, ESCA, HNSC, KIRC, STAD, and THCA were higher compared with normal tissues. Elevated expression of CD47 predicted poor prognosis in ACC, KICH, KIRP, LGG, PAAD and UCEC. CD47 expression was strongly associated with immune infiltrating cells among KICH, KIRP, LGG, and PAAD. In addition, significant positive correlations with most immune checkpoint genes including PDCD 1 (PD-1), CD274 (PD-L1), CTLA4 in BLCA, DLBC, KICH, KIRC, LUAD, LUSC, PAAD, PCPG, SKCM, STAD, UCEC, and UVM was noted for the expression of CD47. GSEA analysis demonstrated that CD47 was a key regulator in metabolism-related pathways. These findings provide novel evidence that CD47 could be utilized as a promising prognostic biomarker and combination treatment target in various cancers.