We present an ultrathin microbubble Fabry-Perot interferometer (FPI) sensor designed for low-pressure and low-temperature sensing applications. The preparation of the ultrathin microbubbles was achieved through an improved arc discharge technique. Consequently, a pressure sensitivity of 63 pm/kPa and a temperature sensitivity of 220 pm/°C at room temperature (20°C) and low air pressure (110–200 kPa) were attained, a performance that is highly commendable for a sensor of its kind. Furthermore, the use of a Bragg grating was employed to eliminate the effect of temperature on pressure, thereby enhancing the accuracy of the measured pressure. Experimental findings indicate that this ultrathin microbubble FPI sensor exhibits ultra-high sensitivity to pressure and temperature at low temperatures and pressures, offering what we believe to be a novel solution for the measurement of low temperatures and low-pressure environments.