The recent development and applications of social network theory in many fields of engineering (electricity, gas, transport, water, etc.) allows both the understanding of networks and to improve their management. Social network theory coupled to the availability of real time data and big data analysis techniques can change drastically the traditional approaches to manage civil networks. Recently, some authors are working to apply this novel approach, based on social network theory, on the water distribution networks using: a) graph partitioning algorithms to define optimal district meter areas both for water losses identification and for water network protection, b) innovative topological, energy and hydraulic indices to analyze performance; and c) GIS (Geographical Information System) to provide a more effective display of results and to improve network behavior in specific operational conditions. In this paper, a novel release 3.5 of SWANP software, that implements all these features, was tested on a real large water network in Alcalá de Henares, Spain.