2018
DOI: 10.48550/arxiv.1807.08690
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Dualité de Koszul formelle et théorie des représentations des groupes algébriques réductifs en caractéristique positive

Abstract: Dans cet article nous présentons les grandes lignes de la preuve d'une formule de caractères pour les représentations basculantes des groupes algébriques réductifs sur un corps de caractéristique positive, obtenue partiellement en collaboration avec plusieurs auteurs. Nous unissons les différentes étapes de cette preuve dans la notion de "dualité de Koszul formelle", et en présentons quelques applications.1. La prépublication [So5] contient une erreur dans une preuve cruciale ; cette preuve a été corrigée, et … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2018
2018
2021
2021

Publication Types

Select...
3

Relationship

3
0

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 29 publications
0
4
0
Order By: Relevance
“…Proof. An equation similar to (8.1), but with SpC, T q replaced by S w0λ , is an immediate consequence of [6, Proposition 9.1] (see also [4,Lemma 6.3] and [10,Proposition 9.4]). We obtain (8.1) by combining these results with Theorem 7.2.…”
Section: Proof Of the Relative Humphreys Conjecturementioning
confidence: 98%
See 1 more Smart Citation
“…Proof. An equation similar to (8.1), but with SpC, T q replaced by S w0λ , is an immediate consequence of [6, Proposition 9.1] (see also [4,Lemma 6.3] and [10,Proposition 9.4]). We obtain (8.1) by combining these results with Theorem 7.2.…”
Section: Proof Of the Relative Humphreys Conjecturementioning
confidence: 98%
“…In recent years, the p-canonical basis for H ext [20], denoted by t p H w | w P W ext u, has come to prominence: see, for instance [9,10,26]. It is natural to ask whether C has some basis that should be called "p-canonical."…”
Section: Applications To the P-canonical Basismentioning
confidence: 99%
“…(Here we follow the conventions of [Soe].) Let us consider In terms of this isomorphism, the ℓ-canonical basis p ℓ N w : w P f W aff q of M asph (see [RW1,AR3]) can be characterized by (8.4) ℓ N w :" chpE IW w q. The associated ℓ-Kazhdan-Lusztig polynomials p ℓ n y,w : y, w P f W aff q are characterized by the equality ℓ N w " ÿ yP f W aff ℓ n y,w ¨Ny .…”
Section: Proof Note That If Ext Nmentioning
confidence: 99%
“…(See Section 2 below for a review of the notation and setup.) It is expected that this functor will make it possible to adapt Gaitsgory's construction of "central sheaves" [Ga] to the setting of the mixed modular derived category [AR1], which has found numerous applications in modular geometric representation theory (see [AR3,§7.1]).…”
Section: Introductionmentioning
confidence: 99%