2023
DOI: 10.1177/02783649231210325
|View full text |Cite
|
Sign up to set email alerts
|

DUEL: Depth visUal Ego-motion Learning for autonomous robot obstacle avoidance

Naiyao Wang,
Bo Zhang,
Haixu Chi
et al.

Abstract: Reliable obstacle avoidance, which is essential for safe autonomous robot interaction with the real world, raises various challenges such as difficulties with obstacle perception and latent factor cognition impacting multi-modal obstacle avoidance. In this paper, we propose a Depth visUal Ego-motion Learning (DUEL) model, consisting of a cognitive generation network, a policy decision network and a potential partition network, to learn autonomous obstacle avoidance from expert policies. The DUEL model takes ad… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 38 publications
0
0
0
Order By: Relevance