Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We present a survey of machine learning works that attempt to organize the process flow of waste management in smart cities. Unlike past reviews, we focused on the waste generation and disposal phases in which citizens, households, and municipalities try to eliminate their solid waste by applying intelligent computational models. To this end, we synthesized and reviewed 42 articles published between 2010 and 2021. We retrieved the selected studies from six major academic research databases. Next, we deployed a comprehensive data extraction strategy focusing on the objectives of studies, trends of ML adoption, waste datasets, dependent and independent variables, and AI-ML-DL predictive models of waste generation. Our analysis revealed that most studies estimated waste material classification, amount of generated waste per area, and waste filling levels per location. Demographic data and images of waste type and fill levels are used as features to train the predictive models. Although various studies have widely deployed artificial neural networks (ANN) and convolutional neural networks (CNN) to classify waste, other techniques, such as gradient boosting regression tree (GBRT), have also been utilized. Critical challenges hindering the prediction of solid waste generation and disposal include the scarcity of real-time time series waste datasets, the lack of performance benchmarking tests of the proposed models, the reliability of the analytics models, and the long-term forecasting of waste generation. Our survey concludes with the implications and limitations of the selected models to inspire further research efforts.
We present a survey of machine learning works that attempt to organize the process flow of waste management in smart cities. Unlike past reviews, we focused on the waste generation and disposal phases in which citizens, households, and municipalities try to eliminate their solid waste by applying intelligent computational models. To this end, we synthesized and reviewed 42 articles published between 2010 and 2021. We retrieved the selected studies from six major academic research databases. Next, we deployed a comprehensive data extraction strategy focusing on the objectives of studies, trends of ML adoption, waste datasets, dependent and independent variables, and AI-ML-DL predictive models of waste generation. Our analysis revealed that most studies estimated waste material classification, amount of generated waste per area, and waste filling levels per location. Demographic data and images of waste type and fill levels are used as features to train the predictive models. Although various studies have widely deployed artificial neural networks (ANN) and convolutional neural networks (CNN) to classify waste, other techniques, such as gradient boosting regression tree (GBRT), have also been utilized. Critical challenges hindering the prediction of solid waste generation and disposal include the scarcity of real-time time series waste datasets, the lack of performance benchmarking tests of the proposed models, the reliability of the analytics models, and the long-term forecasting of waste generation. Our survey concludes with the implications and limitations of the selected models to inspire further research efforts.
The rapid growth of urbanization and industrialization has brought the issue of waste management to the forefront. Industrial, household, and medical waste management and disposal are major issues affecting the whole world. The adoption of digital technologies across society is largely a result of the increasing processing power of waste and decreasing costs. Waste management and recycling is also benefiting from emerging digital technologies. The Internet of Things, cloud computing, artificial intelligence, robotics, and data analytics are a few examples of specific digital technologies that are currently in use and are predicted to have a significant impact on the efficiency of the waste recycling industry in the future. The objective of this review, which was conducted using the bibliometric method and visualized with scientific mapping, is to demonstrate how the digital transformation of waste recycling has evolved over the last decade and to identify which issues have been overlooked or have become more prominent. The scope of the research is based on studies carried out all over the world and on digital applications and works in the field of waste recycling. In this review, bibliometric analysis was used to scan the entire field and the results were classified and interpreted according to the PRISMA (preferred reporting of systematic reviews and meta-analyses) methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.