Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Windblown dunes are common features in our solar system, forming on planetary surfaces that span wide ranges in gravity and both atmospheric and sediment properties. The patterns formed by their crests, which are readily visible from orbital images, can record information about recent changes in boundary conditions, such as shifts in wind regime or varying sediment availability. Here, we demonstrate that the density of dune interactions (where neighboring crestlines are close to each other) within a dune field is an indicator of such changes. Using orbiter-based images of 46 dune fields on Earth and Mars, we compiled a database of pattern parameters including dune spacing, crestline orientation, and interaction density. Combined with sediment fluxes derived from ERA5-Land data and a martian global circulation model, we also compiled dune turnover time scales (the time it takes for a dune to migrate one dune length) for each investigated dune field. First, we show that dune fields undergoing changes in boundary conditions display higher than expected dimensionless interaction indices. Second, dune fields with longer turnover times display a wider range in interaction indices on both Earth and Mars because they are more likely to be observed while still adjusting to recent changes in boundary conditions. Thus, a dune field’s interaction index offers a novel tool to detect and possibly quantify recent environmental change on planetary surfaces.
Windblown dunes are common features in our solar system, forming on planetary surfaces that span wide ranges in gravity and both atmospheric and sediment properties. The patterns formed by their crests, which are readily visible from orbital images, can record information about recent changes in boundary conditions, such as shifts in wind regime or varying sediment availability. Here, we demonstrate that the density of dune interactions (where neighboring crestlines are close to each other) within a dune field is an indicator of such changes. Using orbiter-based images of 46 dune fields on Earth and Mars, we compiled a database of pattern parameters including dune spacing, crestline orientation, and interaction density. Combined with sediment fluxes derived from ERA5-Land data and a martian global circulation model, we also compiled dune turnover time scales (the time it takes for a dune to migrate one dune length) for each investigated dune field. First, we show that dune fields undergoing changes in boundary conditions display higher than expected dimensionless interaction indices. Second, dune fields with longer turnover times display a wider range in interaction indices on both Earth and Mars because they are more likely to be observed while still adjusting to recent changes in boundary conditions. Thus, a dune field’s interaction index offers a novel tool to detect and possibly quantify recent environmental change on planetary surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.