Concrete with light weight and pervious performance has been widely recognized as an effective and sustainable solution for reducing the negative impacts of urbanization on the environment, as it plays a positive role in urban road drainage, alleviating the urban heat island effect and thermal insulation, as well as seismic performance, etc. This research paper presents a feasibility study of pervious concrete preparation with ceramsite as aggregate. First, pervious concrete specimens with different types of aggregates at various water–cement ratios were prepared, and the mechanical properties of pervious concrete specimens were evaluated based on the compressive strength test. Then, the permeability properties of the pervious concrete specimens with different types of aggregates at various water–cement ratios were characterized. Meanwhile, statistical analysis and regression fitting were conducted. Finally, the analysis of the freeze–thaw durability of pervious concrete specimens with ceramsite as aggregate according to indexes including quality loss rate and strength loss rate was performed. The results show that as the water–cement ratio increased, the compressive strength and permeability coefficient of pervious concrete generally decreased. Compressive strength and permeability coefficient showed a great correlation with the water–cement ratio; the R2 values of the models were around 0.94 and 0.9, showing good regression. Compressive strength was mainly provided by the strength of the aggregates, with high-strength clay ceramsite having the highest 28-day compressive strength value, followed by ordinary crushed-stone aggregates and lightweight ceramsite. Porosity was mainly influenced by the particle size and shape of the aggregates. Lightweight ceramsite had the highest permeability coefficient among different types of cement-bound aggregates, followed by high-strength clay ceramsite and ordinary crushed-stone aggregates. The quality and compressive strength of pervious concrete specimens decreased with the increase in freeze–thaw cycles; the quality loss was 1.52%, and the compressive strength loss rate was 6.84% after 25 freeze–thaw cycles. Quadratic polynomial regression analysis was used to quantify the relationship of durability and freeze–thaw cycles, with R2 of around 0.98. The results provide valuable insights into the potential applications and benefits of using ceramsite as an aggregate material in pervious concrete for more sustainable and durable infrastructure projects.