China is the largest producer and user of Ordinary Silicate Cement (OPC), and rapid infrastructure development requires more sustainable building materials for concrete structures. Portland cement emits large amounts of CO2 in production. Given proposals for “carbon peaking and carbon neutralization”, it is extremely important to study alternative low-carbon cementitious materials to reduce emissions. Alkali-activated slag (AAS) cement, a new green cementitious material, has high application potential. The chemical corrosion resistance of AAS concrete is important for ensuring durability and prolonging service life. This paper reviews the hydration mechanism of AAS concrete and discusses the composition of hydration products on this basis, examines the corrosion mechanism of AAS concrete in acid, sulfate, and seawater environments, and reviews the impact of its performance due to the corrosion of AAS concrete in different solutions. Further in-depth understanding of its impact on the performance of concrete can provide an important theoretical basis for its use in different environments and provides an important theoretical basis for the application of AAS concrete, so that we can have a certain understanding of the durability of AAS concrete.