Bio-concretes are receiving special attention in recent research as an alternative for climate change mitigation due to their low carbon footprints. Different bio-based materials can be used, e.g., wood shavings, bamboo, rice husk, and coconut. However, various methodological parameters can influence the carbon footprint of bio-based materials, especially bio-concretes, like biogenic carbon, amount of carbon in dry matter, rotation period of bio-aggregates, and type of cementitious materials. It is important to have easier ways of estimating the carbon footprint of bio-concretes, using parameters and data easily available. This research aims to evaluate the (1) carbon footprint of different mixtures of three bio-concretes (wood bio-concrete - WBC, bamboo bio-concrete - BBC and rice husk bio-concrete - RBC), and the (2) development of GHG emissions curves for bio-concretes specification based on easily available data (such as density, biomass content, and compressive strength). Based on experimental data, the carbon footprint was performed using the Life Cycle Assessment (LCA) methodology. In order to extend the findings of this study, the context of the following four countries was evaluated: Brazil, South Africa, India, and China. In addition, the replacement of Portland cement for Supplementary Cementitious Materials (SCMs) are evaluated hypothetically. The results show that the increase of biomass content in bio-concretes and the replacement of Portland cement by SCMs leads to a radical decrease in life cycle GHG emissions. The percentage of carbon in biomass is a critical factor for reducing the carbon footprint. The WBC was the biomass that performed better for this parameter. The presented GHG emissions curves can be a useful way to estimate the carbon footprint of bio-concretes and can be adapted to other kinds of bio-concretes and countries.