This study was carried out at the International Center for Training and Research in Solar Energy(CIFRES) and its main purpose was to study the performance of a solar module cleaning system. To handle this work, a measuring platform consisting of two polycrystalline (pc-Si) PV modules was designed. The modules were connected to a waterless cleaning system on the surface of the solar panels. The platform also contained a temperature sensor on the surface of the module, a pyranometer, shunt resistors (for current measurement), and an acquisition unit. This platform was exposed under real conditions and measurements of the parameters were taken in increments of ten seconds. Only one of the two modules was cleaned daily, and an evaluation of the degradation rate of the short-circuit current (I sc ) of the dust module with respect to the cleaned module was carried out. After one month of exposure, the analysis of the results showed a degradation rate of 17.13% of the short circuit current (I sc ) of the dirty module compared to the clean module. Compared to the initial conditions under the standard test conditions, a degradation of 10.16 and 24.09%, respectively for the clean module and the dirty module was obtained. This work also showed that a polynomial relation exists between the degradation rate and the dust deposition density with a coefficient of determination of 0.9933.