In this second paper, the effect of secondary electrons on the charge and potential of a dust particle immersed in plasma has been studied. The processes of electron-induced ionization and those of photo-electron and secondary electron emission from the particle surface as a function of primary electron temperature have been taken into account. Starting from temperatures as low as 6 eV in an Ar plasma, ionization produces an extra ion flux to the dust surface comparable to that of the ion charge exchange effect. For what concerns the surface emission, results show that a transition from negative to positive dust charge/potential takes place, and that the transition regime is characterized by a non-monotonic behavior of the electric potential around the particle. In the case of photoelectric emission, the dust charge and potential are monotonic decreasing functions of the electron temperature, while in the case of emission induced by primary electrons a minimum charge/potential is reached before they grow towards positive values. In no case multiple dust charge states have been observed due to the presence of the potential well attached to the particle surface.