Abstract:Learning domain-invariant representations is a major task of out-of-distribution generalization. To address this issue, recent efforts have taken into accounting causality, aiming at learning the causal factors with regard to tasks. However, extending existing generalization methods for adapting non-stationary time series may be ineffective, because they fail to model the underlying causal factors due to temporal-domain shifts except for source-domain shifts, as pointed out by recent studies. To this end, we p… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.