Abstract:The challenge in learning from dynamic graphs for predictive tasks lies in extracting fine-grained temporal motifs from an ever-evolving graph. Moreover, task labels are often scarce, costly to obtain, and highly imbalanced for large dynamic graphs. Recent advances in self-supervised learning on graphs demonstrate great potential, but focus on static graphs. State-of-the-art (SoTA) models for dynamic graphs are not only incompatible with the self-supervised learning (SSL) paradigm but also fail to forecast int… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.