The native oxide layer that forms on copper (Cu) metal spherical particle surfaces under ambient handling conditions has been shown to have a significant effect on sintering behavior during microwave heating in a previous study, where an abnormal expansion was observed and characterized during sintering of Cu compacts using reducing gases. Because microwave (MW) heating is selective and depends greatly on the dielectric properties of the materials, this thin oxide layer will absorb MW energy easily and can consequently be heated drastically starting from room temperature until the reduction process occurs. In the current study, this oxide ceramic layer was qualitatively and quantitatively characterized using the carrier gas hot extraction (CGHE) method, Auger electron spectroscopy (AES), and a dual-beam focused ion beam (FIB)/scanning electron microscope (SEM) system that combines both FIB and SEM in one single instrument. Two different commercial gas-atomized spherical Cu metal powders with different particle sizes were investigated, where the average oxygen content of the powders was found to be around 0.575 wt% using the CGHE technique. Furthermore, AES spectra along with depth profile measurements were used to qualitatively characterize this oxide layer, with only a rough quantitative thickness approximation due to method limitations and the electron beam reduction effect. For the dual-beam FIB-SEM system, a platinum (Pt) coating was first deposited on the Cu particle surfaces prior to any characterization in order to protect and to preserve the oxide layer from any possible beam-induced reduction. Subsequently, the Pt-coated Cu particles were then cross-sectioned in the middle in situ using an FIB beam, where SEM micrographs of the resulted fresh sections were characterized at a 36° angle stage tilt with four different detector modes. Quantitative thickness characterization of this native oxide layer was successfully achieved using the adapted dual-beam FIB-SEM setup with more accuracy. Overall, the native Cu oxide layer was found to be inhomogeneous over the particles, and its thickness was strongly dependent on particle size. The thickness ranged from around 22–67 nm for Cu powder with a 10 µm average particle size (APS) and around 850–1050 nm for one with less than 149 µm.