2022
DOI: 10.1016/j.chaos.2022.112269
|View full text |Cite
|
Sign up to set email alerts
|

Dynamic analysis and adaptive modified projective synchronization for systems with Atangana-Baleanu-Caputo derivative: A financial model with nonconstant demand elasticity

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 26 publications
0
2
0
1
Order By: Relevance
“…The study of the complex dynamics of economic systems has become a prominent issue in economics and macroeconomics in recent years. Several nonlinear continuous models have been proposed to explicate the core features of economic data based on the dynamic behavior of the system [6][7][8][9][10][11][12][13][14][15]. The results of investigating the dynamics of an economic system with chaotic behavior and a suboptimal control proposal to suppress the chaotic behavior are presented [8].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The study of the complex dynamics of economic systems has become a prominent issue in economics and macroeconomics in recent years. Several nonlinear continuous models have been proposed to explicate the core features of economic data based on the dynamic behavior of the system [6][7][8][9][10][11][12][13][14][15]. The results of investigating the dynamics of an economic system with chaotic behavior and a suboptimal control proposal to suppress the chaotic behavior are presented [8].…”
Section: Introductionmentioning
confidence: 99%
“…A fractional order economic quantity model with time-varying holding cost is discussed in detail with the help of numerical computations [9]. Based on the definition of Atangana-Baleanu-Caputo fractional derivative, the integer-order financial chaotic system with nonconstant demand elasticity is extended to a fractional-order system, and its nonlinear dynamic properties are analyzed [10]. The chaotic complexity of a financial mathematical model in terms of a new generalized Caputo fractional derivative is analyzed [11].…”
Section: Introductionmentioning
confidence: 99%
“…Para investigar el comportamiento del flujo de precios en el mercado financiero podría usarse la información dinámica y geométrica que cargan, usando teoremas de reconstrucción [16], bajo la hipótesis de que las variables que describen el comportamiento del flujo de precios están relacionadas de alguna manera [10], [8]. Existe evidencia de que el flujo de precios en el mercado financiero podría provenir de un sistema no lineal [8], [16]; en este sistema no lineal, su estado de operación puede aparecer como un fenómeno caótico generado por el cambio de los parámetros del sistema, lo que resulta en un desorden económico, el cual se podría regular utilizando la dinámica no lineal y otras herramientas de la teoría de los sistemas dinámicos [13]. Por lo tanto, los sistemas dinámicos, generados por sistemas de ecuaciones diferenciales no lineales, representan una adecuada herramienta a utilizar para describir la evolución del flujo de precios en el mercado financiero; el cual se logra reconstruyendo el atractor que existe detrás de la serie temporal de precios mediante las coordenadas de retraso.…”
unclassified