The purpose of this paper is to investigate the possible implementation of the Fast model predictive control (MPC) scheme for chemical systems. Due to the difficulties associated with complicated dynamic behavior and model sensitivity, which results in considerable offsets, the Fast MPC controller has not been implemented on the CO 2 capture plant based on the absorption/stripping system. The main objective of this work is to evaluate the most appropriate model for implementing the Fast MPC control strategy, which results in fast output responses, negligible offsets, and minimum errors. The steady-state and dynamic simulation models of the CO 2 capture plant are designed in Aspen PLUS. In the System Identification Toolbox, multiple state-space models are identified to achieve a highly accurate model for the Fast MPC controller. The Fast MPC controller is then implemented to evaluate the performance under a setpoint tracking mode with ±5 and ±15% step changes. The results showed that the Fast MPC based on the statespace prediction focus model has on average 7.9 times lower offset than the simulation focus model and 10.4 times lower integral absolute error values. The comparison study concluded that the Fast MPC control strategy performs efficiently using prediction-based focus state-space models for CO 2 capture plants using the absorption/stripping system with minimum offsets and errors.