Abstract-This paper considers the problem of temporally fusing classifier outputs to improve the overall diagnostic classification accuracy in safety-critical systems. Here, we discuss dynamic fusion of classifiers which is a special case of the dynamic multiple fault diagnosis (DMFD) problem [1]-[3]. The DMFD problem is formulated as a maximum a posteriori (MAP) configuration problem in tri-partite graphical models, which is NP-hard. A primal-dual optimization framework is applied to solve the MAP problem. Our process for dynamic fusion consists of four key steps: (1) data preprocessing such as noise suppression, data reduction and feature selection using data-driven techniques, (2) error correcting codes to transform the multiclass data into binary classification, (3) fault detection using pattern recognition techniques (support vector machines in this paper), and (4) dynamic fusion of classifiers output labels over time using the DMFD algorithm. An automobile engine data set, simulated under various fault conditions [4], was used to illustrate the fusion process. The results demonstrate that an ensemble of classifiers, when fused over time, reduces the diagnostic error as compared to a single classifier and static fusion of classifiers trained over the entire batch of data. The results for sliding window dynamic fusion are also provided.