In laser materials processing, energy losses due to reflection, heat conduction and thermal radiation play an important role. In this publication, we show that with increasing laser intensity, the energy lost within the sample becomes less important for metal perforation processes. We compare the laser-matter interaction of aluminium and steel plates. Material parameters such as density, melting point and especially thermal conductivity differ strongly, leading to much longer perforation times for aluminium in comparison to steel at laser powers of 20 kW. However, this behaviour changes at laser powers of more than 80 kW where the perforation times of aluminium become shorter than the corresponding times for steel. By comparing experimental data and simulations, we conclude that thermal conduction is the dominant factor of energy loss at low powers, but is reduced at high laser powers.