The stability of a double-row steel sheet pile cofferdam structure under soft ground conditions was investigated in this study, using the temporary cofferdam of the Shenzhen–Zhongshan cross-river channel as the engineering background. The stability of the cofferdam design solution was calculated with a model that incorporates factors such as the coordination of independent pile top displacement, as well as the m-value for backfilled sand and the thrown rock body. The internal force and displacement results of the cofferdam under different working conditions are obtained. And the entire construction process was analyzed using the finite element method. The results indicate that the overall stability and overturning stability of the cofferdam satisfy relevant safety requirements, with minimum safety factors of 1.744 and 1.400, respectively. The maximum displacement of the inner and outer steel sheet piles is 34 mm, the maximum bending moment is 249.30 kN·m, and the maximum shear force is 266.66 kN. The displacements of sheet piles were within an acceptable range, and the internal forces remained below the load capacity of the selected sheet pile type for the design. Based on these findings, the cofferdam structure can be considered safe and satisfying the specified requirements. This work may have instructive value for cofferdam design and construction.