We expand the second-order fluid–structure coupling scheme of Farhat et al. (1998, “Load and Motion Transfer Algorithms for 19 Fluid/Structure Interaction Problems With Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity,” Comput. Methods Appl. Mech. Eng., 157(1–2), pp. 95–114; 2006, “Provably Second-Order Time-Accurate Loosely-Coupled Solution Algorithms for Transient Nonlinear Computational Aeroelasticity,” Comput. Methods Appl. Mech. Eng., 195(17), pp. 1973–2001) to structural acoustics. The staggered structural acoustics solution method is demonstrated to be second-order accurate in time, and numerical results are compared to a monolithically coupled system. The partitioned coupling method is implemented in the Sierra Mechanics software suite, allowing for the loose coupling of time domain acoustics in sierra/sd to structural dynamics (sierra/sd) or solid mechanics (sierra/sm). The coupling is demonstrated to work for nonconforming meshes. Results are verified for a one-dimensional piston, and the staggered and monolithic results are compared to an exact solution. Huang, H. (1969, “Transient Interaction of Plane Acoustic Waves With a Spherical Elastic Shell,” J. Acoust. Soc. Am., 45(3), pp. 661–670) sphere scattering problem with a spherically spreading acoustic load demonstrates parallel capability on a complex problem. Our numerical results compare well for a bronze plate submerged in water and sinusoidally excited (Fahnline and Shepherd, 2017, “Transient Finite Element/Equivalent Sources Using Direct Coupling and Treating the Acoustic Coupling Matrix as Sparse,” J. Acoust. Soc. Am., 142(2), pp. 1011–1024).