This paper deals with the lateral vibration of a finite double-Rayleigh beam system having arbitrary classical end conditions and traversed by a concentrated moving mass. The system is made up of two identical parallel uniform Rayleigh beams which are continuously joined together by a viscoelastic Winkler type layer. Of particular interest, however, is the effect of the mass of the moving load on the dynamic response of the system. To this end, a solution technique based on the generalized finite integral transform, modified Struble’s method, and differential transform method (DTM) is developed. Numerical examples are given for the purpose of demonstrating the simplicity and efficiency of the technique. The dynamic responses of the system are presented graphically and found to be in good agreement with those previously obtained in the literature for the case of a moving force. The conditions under which the system reaches a state of resonance and the corresponding critical speeds were established. The effects of variations of the ratio (γ1) of the mass of the moving load to the mass of the beam on the dynamic response are presented. The effects of other parameters on the dynamic response of the system are also examined.