Dynamic bus scheduling refers to adjusting the departure time according to the latest time-varying information or adjusting bus speed in the process of operation. These control strategies can prevent bus bunching and alleviate traffic pressure. The paper studies the multiline bus dynamic scheduling with consideration of departure time and speed meanwhile. The hyperheuristic algorithm is proposed, and low-level heuristics (LLH) operators are designed. The simulation experiment is performed for the passenger flow distribution of different strengths and types of different scenarios. By comparing the experimental results of genetic algorithm (GA) and hyperheuristic algorithm in solving different scenarios, the results show that in smooth, increasing, decreasing, and multiconvex passenger flow mode, the performance of the hyperheuristic algorithm is higher than that of GA. The promotion rate reaches 18∼28%, and especially the average value of the hyperheuristic algorithm designed under multiconvex passenger flow is up to 28.62%, significantly reducing passengers’ waiting time. By comparing the stability of the three passenger flow modes, the results illustrate that the stability of the hyperheuristic algorithm is lower than that of GA. For the smooth passenger flow mode, the stability of medium and lower density of GA is higher than that of the hyperheuristic algorithm. In comparison, the high-density stability of the hyperheuristic algorithm is better than that of GA.