We investigated the cerebral autoregulation (CA) dynamics parameter phase and gain change when exposed to a longlasting motor task. 25 healthy subjects (mean age ± SE, 38±2.6 years, 13 females) underwent simultaneous recordings of spontaneous fluctuations in blood pressure (BP), cerebral blood flow velocity (CBFV), and end-tidal CO2 (ETCO2) over 5 min of rest followed by 5 min of left elbow flexion at a frequency of 1 Hz. Tansfer function gain and phase between BP and CBFV were assessed in the frequency ranges of very low frequencies (VLF, 0.02-0.07 Hz), low frequencies (LF, 0.07-0.15), and high frequencies (HF, >0.15). CBFV increased on both sides rapidly to maintain an elevated steady state until movement stopped. Cerebrovascular resistance fell on the right side (rest 1.35±0.06, movement 1.28±0.06, p<0.01), LF gain decreased from baseline (right side 0.97±0.07 %/mm Hg, left 1.01±0.09) to movement epoch (right 0.73±0.08, left 0.76±0.06, p≤0.01). VLF phase decreased from baseline (right 1.03±0.05 radians, left 1.10±0.06) to the movement epoch (right 0.81±0.07, left 0.82±0.10, p≤0.05). CA regulates continuous motor efforts by changes in resistance, gain and phase.