This chapter deals with the investigation on stability and bifurcation analysis of a highly non-linear electrically driven micro-electro-mechanical resonator has been established. A non-linear model of this system will briefly be described considering both transverse and longitudinal displacement of the resonator. A short description to explore the need of incorporating higher-order correction of electrostatic pressure has been highlighted. The pull-in results and consequences of higherorder correction on the pull-in stability will be reported. In addition, consequences of air-gap, electrostatic forcing parameter, and effective damping on non-linear phenomena have been studied to highlight the possible undesirable catastrophic failure at the unstable critical points. Basins of attractions that postulate a unique response in multi-region state for a specific initial condition will also be studied. This chapter can enable a significant adaptation to identify the locus of instability in micro-cantilever-based resonator when subjected to AC voltage polarization with the understanding of theoretical ideas for controlling the systems and optimizing their operation.