Purpose:
The purpose of the study is to investigate the impact of large target offset distances on the dose distribution and gamma passing rate (GPR) in single-isocenter multiple-target stereotactic radiosurgery (SIMT SRS) using volumetric modulated arc therapy (VMAT) with a flattening filter-free (FFF) beam from a linear accelerator.
Methods:
Two targets with a diameter of 1 cm were offset by ”±2, ±4, and ±6 cm from the isocenter in a verification phantom for head SRS (20 Gy/fr). The VMAT plans were created using collimator angles that ensured the two targets did not share a leaf pair from the multi-leaf collimator. To evaluate the low-dose spread intermediate dose spill (R50%), GPRs were measured with a criterion of 3%/2 mm using an electronic portal imaging device and evaluated using monitor unit (MU), modulation complexity score for VMAT (MCSv), and leaf travel (LT) parameters.
Results:
For offsets of 2, 4, and 6 cm, the respective parameters were: R50%, 4.75 ± 0.36, 5.13 ± 0.36, and 5.11 ± 0.33; GPR, 95.01%, 93.82%, and 90.67%; MU, 5893 ± 186, 5825 ± 286, and 5810 ± 396; MCSv, 0.24, 0.16, and 0.13; and LT, 189.21 ± 36.04, 327.69 ± 67.01, and 430.39 ± 114.34 mm. There was a spread in the low-dose region from offsets of ≥4 cm and the GPR negatively correlated with LT (r = −0.762). There was minimal correlation between GPR and MU or MCSv.
Conclusions:
In SIMT SRS VMAT plans with an FFF beam from a linear accelerator, target offsets of <4 cm from the isocenter can minimize the volume of the low-dose region receiving 10 Gy or more. During treatment planning, it is important to choose gantry, couch, and collimator angles that minimize LT and thereby improve the GPR.