Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Accurate diagnosis and assessment of disease extent are crucial for proper management of patients with HCC. Imaging plays a crucial role in early detection, accurate staging, and the planning of management strategies. A variety of imaging modalities are currently used in evaluating patients with suspected HCC; these include ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine, and angiography. Among these modalities, dynamic MRI and CT are regarded as the best imaging techniques available for the noninvasive diagnosis of HCC. Recent improvements in CT and MRI technology have made noninvasive and reliable diagnostic assessment of hepatocellular nodules possible in the cirrhotic liver, and biopsy is frequently not required prior to treatment. Until now, the major challenge for radiologists in imaging cirrhosis has been the characterization of small cirrhotic nodules smaller than 2 cm in diameter. Further technological advancement will undoubtedly have a major impact on liver tumor imaging. The increased speed of data acquisition in CT and MRI has allowed improvements in both spatial and temporal resolution, which have made possible a more precise evaluation of the hemodynamics of liver nodules. Furthermore, the development of new, tissue-specific contrast agents such as gadoxetic acid has improved HCC detection on MRI. In this review, we discuss the role of CT and MRI in the diagnosis and staging of HCC, recent technological advances, and the strengths and limitations of these imaging modalities.